6,449 research outputs found

    Development of an augmented reality guided computer assisted orthopaedic surgery system

    Get PDF
    Previously held under moratorium from 1st December 2016 until 1st December 2021.This body of work documents the developed of a proof of concept augmented reality guided computer assisted orthopaedic surgery system – ARgCAOS. After initial investigation a visible-spectrum single camera tool-mounted tracking system based upon fiducial planar markers was implemented. The use of visible-spectrum cameras, as opposed to the infra-red cameras typically used by surgical tracking systems, allowed the captured image to be streamed to a display in an intelligible fashion. The tracking information defined the location of physical objects relative to the camera. Therefore, this information allowed virtual models to be overlaid onto the camera image. This produced a convincing augmented experience, whereby the virtual objects appeared to be within the physical world, moving with both the camera and markers as expected of physical objects. Analysis of the first generation system identified both accuracy and graphical inadequacies, prompting the development of a second generation system. This too was based upon a tool-mounted fiducial marker system, and improved performance to near-millimetre probing accuracy. A resection system was incorporated into the system, and utilising the tracking information controlled resection was performed, producing sub-millimetre accuracies. Several complications resulted from the tool-mounted approach. Therefore, a third generation system was developed. This final generation deployed a stereoscopic visible-spectrum camera system affixed to a head-mounted display worn by the user. The system allowed the augmentation of the natural view of the user, providing convincing and immersive three dimensional augmented guidance, with probing and resection accuracies of 0.55±0.04 and 0.34±0.04 mm, respectively.This body of work documents the developed of a proof of concept augmented reality guided computer assisted orthopaedic surgery system – ARgCAOS. After initial investigation a visible-spectrum single camera tool-mounted tracking system based upon fiducial planar markers was implemented. The use of visible-spectrum cameras, as opposed to the infra-red cameras typically used by surgical tracking systems, allowed the captured image to be streamed to a display in an intelligible fashion. The tracking information defined the location of physical objects relative to the camera. Therefore, this information allowed virtual models to be overlaid onto the camera image. This produced a convincing augmented experience, whereby the virtual objects appeared to be within the physical world, moving with both the camera and markers as expected of physical objects. Analysis of the first generation system identified both accuracy and graphical inadequacies, prompting the development of a second generation system. This too was based upon a tool-mounted fiducial marker system, and improved performance to near-millimetre probing accuracy. A resection system was incorporated into the system, and utilising the tracking information controlled resection was performed, producing sub-millimetre accuracies. Several complications resulted from the tool-mounted approach. Therefore, a third generation system was developed. This final generation deployed a stereoscopic visible-spectrum camera system affixed to a head-mounted display worn by the user. The system allowed the augmentation of the natural view of the user, providing convincing and immersive three dimensional augmented guidance, with probing and resection accuracies of 0.55±0.04 and 0.34±0.04 mm, respectively

    The Post-\u3ci\u3eCuno\u3c/i\u3e Litigation Landscape

    Get PDF

    The Post-\u3ci\u3eCuno\u3c/i\u3e Litigation Landscape

    Get PDF

    Real-world Quantum Sensors: Evaluating Resources for Precision Measurement

    Full text link
    Quantum physics holds the promise of enabling certain tasks with better performance than possible when only classical resources are employed. The quantum phenomena present in many experiments signify nonclassical behavior, but do not always imply superior performance. Quantifying the enhancement achieved from quantum behavior requires careful analysis of the resources involved. We analyze the specific case of parameter estimation using an optical interferometer, where increased precision can be achieved using quantum probe states. Common performance measures are examined and it is shown that some overestimate the improvement. For the simplest experimental case we compare the different measures and show this overestimate explicitly. We give the preferred analysis of real-world experiments and calculate benchmark values for experimental parameters necessary to realize a precision enhancement.Comment: 8 pages, 3 figure

    Age and sex-specific rates of leaf regeneration in the Mojave Desert moss Syntrichia caninervis

    Full text link
    The extremely skewed female-biased sex ratio in the desert moss Syntrichia caninervis was investigated by assessing the regeneration capacity of detached leaves. Juvenile, green, yellow-green, and brown leaves equating to approximately 0, 2, 6, and 12 yr of age, respectively, were detached from individuals of S. caninervis collected from 10 field populations and grown in a growth chamber for 58 d at a light intensity of 33–128 µmol · m–2 · s–1. Younger leaves (0–2 yr old) tended to have a greater viability, regenerate more quickly, extend their protonemal filaments farther, produce shoots (gametophores) more quickly, produce more shoots, and accumulate a greater biomass than older leaves (6 and 12 yr old). Among younger leaf classes, regenerating female leaves were more likely to produce a shoot than male leaves and produced more shoots than male leaves. The sexes did not differ significantly in time until protonemal emergence, linear extension of protonemata, or rate of biomass accumulation. However, protonemata of male leaves tended to emerge more quickly and produce a greater total biomass, ultimately consisting mostly of protonemata, than did female leaves. The more rapid proliferation of shoots by female leaf regenerants may help to explain the rarity of males in this species

    Introducing research initiatives into healthcare: What do doctors think?

    Get PDF
    Background: Current national and international policies emphasize the need to develop research initiatives within our health care system. Institutional biobanking represents a modern, large-scale research initiative that is reliant upon the support of several aspects of the health care organization. This research project aims to explore doctors' views on the concept of institutional biobanking and to gain insight into the factors which impact the development of research initiatives within healthcare systems. Methods: Qualitative research study using semi-structured interviews. The research was conducted across two public teaching hospitals in Sydney, Australia where institutional biobanking was being introduced. Twenty-five participants were interviewed, of whom 21 were medical practitioners at the specialist trainee level or above in a specialty directly related to biobanking; four were key stakeholders responsible for the design and implementation of the biobanking initiative. Results: All participants strongly supported the concept of institutional biobanking. Participants highlighted the discordance between the doctors who work to establish the biobank (the contributors) and the researchers who use it (the consumers). Participants identified several barriers that limit the success of research initiatives in the hospital setting including: the 'resistance to change' culture; the difficulties in engaging health professionals in research initiatives; and the lack of incentives offered to doctors for their contribution. Doctors positively valued the opportunity to advise the implementation team, and felt that the initiative could benefit from their knowledge and expertise. Conclusion: Successful integration of research initiatives into hospitals requires early collaboration between the implementing team and the health care professionals to produce a plan that is sensitive to the needs of the health professionals and tailored to the hospital setting. Research initiatives must consider incentives that encourage doctors to adopt operational responsibility for hospital research initiatives

    HLA-II Alleles Influence Physical and Behavioral Responses to a Whey Allergen in a Transgenic Mouse Model of Cow\u27s Milk Allergy

    Get PDF
    The symptoms of food allergies vary significantly between individuals, likely due to genetic determinants. In humans, allergy development is initiated by antigen-presenting cells via class II human leukocyte antigen (HLA-II). The HLA-II gene is highly polymorphic, and its allelic variance is thought to influence the susceptibility of individuals to a particular allergen. However, whether antigen presentation by different HLA-II variants contributes to symptom variation is not clear. We hypothesized that HLA-II allelic variance affects symptom phenotypes, including immediate physical reactions and delayed behavioral changes, in individuals with food hypersensitivity. To test our hypothesis, male and female mice of three transgenic strains expressing an HLA-II variant, DR3, DR15, or DQ8, were used to establish a cow\u27s milk allergy model. Mice were sensitized to a bovine whey allergen, β-lactoglobulin (BLG; Bos d 5), weekly for 5 weeks, followed by an acute oral allergen challenge. At 30 min post-challenge, BLG-sensitized DR3 mice showed moderate to severe anaphylaxis resulting in perioral redness, swelling, and death. In contrast, DQ8 and DR15 mice were generally asymptomatic. The production of allergen-specific immunoglobulins was also HLA- and sex-dependent. Both male and female DR3 and female DR15 mice significantly increased BLG-specific IgE production, while robust elevation in BLG-specific IgG1 was observed in sensitized DQ8 mice of both sexes and, to a lesser extent, in DR15 males. Furthermore, BLG-sensitized DR15 mice showed sex-specific behavior changes, with males exhibiting mobility changes and anxiety-like behavior and females showing spatial memory impairment. When splenocytes from transgenic mice were stimulated in vitro with BLG, phenotypes of immune cells were HLA- and sex-specific, further underscoring the influence of HLA-II on immune responses. Our results support that HLA-II alleles influence behavioral responses in addition to immune and physical reactions of food allergy, suggesting that certain HLA-II variants may predispose individuals to food-allergy-associated behavioral changes
    corecore